Сложение дробей с разными знаменателями это, пожалуй, самая сложная тема математики 5 класса. Чтобы не допускать ошибок в будущем и настоящем, разберем подробнее эту тему и выявим наиболее распространенные ошибки.
Что такое дробь?
Дробью называют незавершенную операцию деления. Это значит, что любую дробь можно превратить в привычное число, поделив числить на знаменатель. Чаще всего результатом такого деления является десятичная дробь. Почему люди не используют все время десятичные дроби, если все равно все сводится к такому виду записи.
Проблема в том, что большая часть обыкновенных дробей не переводится в десятичные. Получается бесконечная дробь. А сокращение дроби в результате деления приведет к уменьшению точности вычислений. Поэтому и используются обыкновенные дроби.
Если переводить это определение в реальную жизнь, то можно сказать, что знаменатель это количество частей, на которое разделили целое, а числитель – части, которые взяли себе, отбросив в сторону основные.
Почему нельзя складывать дроби с разными знаменателями?
Несколько сотен лет назад этого правила не было. Тогда в расчетах купцов часто встречались следующие рассуждения: 3 сотые части бочонка были куплены вместе с двумя третьими соболиного меха и так далее. Такой метод исчисления крайне неудобен.
Знаменатели в мире дробей это как единицы измерения в физике. Нельзя складывать вместе слонов и зайцев, пироги и пельмени, ${2\over{3}}$ и ${4\over{9}}$. Просто потому, что это разные числа. Поэтому для того, чтобы сложить
Как найти общий знаменатель дробей?
В знаменателе всегда стоит какое-то число. Общим знаменателем дробей называется наименьшее общее кратное этих чисел. В самом простом случае, оба знаменателя представлены простыми числами. Тогда кратное находится как произведение этих чисел.
В произвольном случае, нужно следовать правилу:
- Числа раскладываются на простые множители. Не обязательно чисел будет два. Ведь не всегда складывается две дроби, в примере может быть любое количество чисел.
- В знаменателях ищут общие простые множители. Эти множители желательно выделить отдельно. Так мы находим общую часть чисел.
- Если общей части у чисел нет, то кратное находится как произведение чисел друг на друга.
- Кроме общей части у чисел остаются множители, характерные для каждого числа в отдельности. Для того, чтобы найти кратное, выписывается общая часть и умножается на каждый из уникальных множителей
- 27=3*3*3
48=2*2*2*2*3
- Общей частью чисел является только один множитель 3
- НОК=3*(3*3)*(2*2*2*2) – произведение 3 было взято из разложения числа 27, произведение 2 является уникальной частью числа 48
- Подведем итог: НОК=3*9*16=432
Большие числа часто получаются при нахождении общего знаменателя. Ученики могут испугаться этого и начать искать ошибку, теряя время. Поэтому нужно верить в свои силы.
Пример
Рассмотрим небольшой пример сложения дробей:
${3\over{22}}+{7\over{47}}+{5\over{44}}$ – заметим, что первый и третий множители имеют схожие делители. Сложение лучше произвести сначала для них.
22=11*2
44=11*2*2
Для того, чтобы найти сумму дробей нужно домножить 3/22 на 2.
${3\over{22}}={6\over{44}}$
${3\over{22}}+{5\over{44}}={6\over{44}}+{5\over{44}}={11\over{44}}={1\over{4}}$ – заметим, что дробь сократилась. Таким образом? у нас получилось упростить конечные вычисления.
Пример принимает следующий вид:
${3\over{22}}+{7\over{47}}+{5\over{44}}={1\over{4}}+{7\over{47}}$ – число 47 является простым. Это можно узнать по таблице простых чисел. Значит, для нахождения НОК этих чисел, их нужно перемножить.
4*47=188
${1\over{4}}+{7\over{47}}={{1*47+7*4}\over{188}}={75\over{188}}$
Что мы узнали?
Мы поговорили о дробях. Узнали, зачем нужно приводить дроби к одному знаменателю перед сложением. Поговорили о том, как найти общий знаменатель. Рассмотрели небольшой пример сложения дробей с разными знаменателями.
Комментирование закрыто