Свойства рентгеновских лучей

Одним из видов электромагнитного излучения являются рентгеновские лучи. Благодаря высокой проникающей способности эти лучи нашли широкое применение в медицине и других областях народного хозяйства. Поговорим кратко об основных свойствах рентгеновских лучей.

Свойства рентгеновских лучей

Рис. 1. В. Рентген.

Вскоре стало ясно, что катодная трубка при работе испускает не только катодные лучи, но и другое невидимое излучение, обладающее свойствами, отличающимися от свойств катодных лучей. В частности, выяснилось, что это излучение вызывает свечение бумажных экранов, пропитанных веществом, реагирующим на УФ-излучение (тетрацианоплатинатом бария, химическая формула $Ba[Pt(CN)_4]$).

Вновь открытое излучение было названо X-лучами. Однако в дальнейшем за излучением закрепилось название «рентгеновские лучи».

Свойства рентгеновских лучей

Поскольку X-лучи вызывали свечение экранов, чувствительных к УФ-излучению, предположили, что природа этих лучей близка к природе ультрафиолета. Однако сразу была открыта гораздо большая проникающая способность X-лучей. Если ультрафиолетовые лучи полностью задерживались достаточно тонким слоем многих веществ, то X-лучи глубоко проникали в большинство сред.

Было выявлено, что рентгеновские лучи представляют собой электромагнитное излучение с еще более короткой длиной волны, чем у УФ-излучение. Диапазон частот X-лучей лежал в пределах $10^{18}$ Гц — $10^{20}$ Гц. Кратко говоря, X-лучи испускаются в соответствии с законами электродинамики в результате резкого торможения электронов катодных лучей в веществе. При этом спектр излучения получается непрерывным.

Позже были открыты и линейчатые рентгеновские спектры, которые возникают при переходах электронов между энергетическими уровнями в атомах. Кроме того, при распространении в веществе рентгеновские лучи способны к ионизации: электроны внешних оболочек получают энергию, достаточную, чтобы покинуть атом, образуя в веществе заряженные ионы.

Самым замечательным свойством Х-лучей оказалось то, что при проникновении сквозь вещество они ослаблялись пропорционально плотности этого вещества. И особенно заметна эта зависимость была, если плотность вещества была близка к плотности воды.

Поскольку биологическая ткань имеет как раз такую плотность, то если она располагалась на пути X-лучей, на экране отчетливо были видны все ее неоднородности — кости, сухожилия, внутренние полости. Появилась возможность медицинских исследований внутренних органов человека без хирургического вмешательства. Это и обусловило широчайшее применение X-лучей в медицине и лучевой диагностике.

Свойства рентгеновских лучей

Рис. 2. Медицинский рентгеновский аппарат.

Не менее важным свойством рентгеновских лучей, нашедшим применение в рентгеноструктурном анализе, явилась дифракция рентгеновского излучения на атомах вещества. По дифракционной картине излучения, прошедшего сквозь кристалл, можно исследовать пространственную структуру молекул и даже отдельных атомов.

Именно рентгеноструктурный анализ позволил установить строение сложных органических молекул — белков и ДНК.

Еще одна сфера использования рентгеновских лучей — дефектоскопия. За счет малой длины волны становится возможным находить самые мелкие неоднородности и разрушения в веществе, предотвращая серьезные разрушения и аварии.

Свойства рентгеновских лучей

Рис. 3. Рентгеноструктурный анализ.

Что мы узнали?

Рентгеновские лучи — это электромагнитное излучение малой длины волны. Оно обладает большой проникающей способностью, а также способно ионизировать вещество. Проникающая способность и малая длина волны определяют сферу применения рентгеновских лучей — медицина, дефектоскопия, рентгеноструктурный анализ.