Мгновенная скорость

Большинство движений в природе являются неравномерными. При описании таких движений большое значение имеет параметр «мгновенная скорость». Рассмотрим его подробнее.

$$v={20\over 2.02}=9.9(м/с)$$

Выходит, что через полсекунды после начала падения предмет окажется на 5м ниже, чем исходная точка, через секунду – на 9.9м ниже.

Однако, проведя реальное измерение, можно убедиться, что это совсем не так. За первую секунду предмет пройдет только 4.9м. А за первые полсекунды – всего лишь 1.23м ! Если же высота падения будет больше, то за три секунды путь составит не 29.7м, как следует из формулы, а больше 40м !

Мгновенная скорость

Рис. 2. Стробоскопическое фото свободного падения.

Причина такого расхождения с расчетом состоит в том, что предмет под действием тяготения Земли движется неравномерно, постоянно изменяя скорость. И на каком бы участке мы не измерили его скорость – полученное значение будет различно, и его невозможно будет использовать в расчетах и уравнениях для других участков.

Свести неравномерное движение к равномерному невозможно.

Мгновенная скорость

Описанное затруднение можно разрешить, если учесть, что движение – процесс непрерывный. Ни координаты точки, ни ее скорость не могут изменяться скачками. Во время движения точка проходит все бесчисленное множество координат пути, на всем пути скорость ее непрерывно изменяется в некотором диапазоне, и при этом, чем меньше рассматриваемый отрезок времени, тем меньше будет изменение координаты и скорости.

Рассмотрим падение предмета, начиная с конца первой секунды. В этот момент координата будет равна 4.905м. Отметим новую координату падающего предмета через небольшое время, и вычислим скорость:

Время

Координата

Скорость

1.000

4.905

2.000

19.620

14.715

1.500

11.036

12.263

1.100

5.935

10.301

1.050

5.408

10.055

1.010

5.004

9.859

1.001

4.915

9.815

Можно видеть, что с уменьшением рассматриваемого отрезка времени, изменение вычисленной скорости между строками таблицы также становится меньше.

Приведенный пример показывает главный прием, который используется для изучения непрерывных величин – изучаемый диапазон разбивается на мелкие участки, на которых изменение скорости невелико, и движение мало отличается от непрерывного. В пределе время прохождения каждого такого участка стремится к нулю, а скорость на его протяжении постоянна.

Скорость материальной точки в данный момент времени при прохождении данного малого участка пути называется мгновенной скоростью.

Мгновенная скорость

Рис. 3. Мгновенная скорость.

Мгновенная скорость материальной точки равна отношению малого перемещения на пути движения к времени прохождению этого перемещения. Формула мгновенной скорости:

$$v={ΔS\over Δt}, при Δt rightarrow 0$$

Если для моментов времени, приведенных выше, измерить точные значения мгновенной скорости падающего предмета, то получим следующую таблицу (с отличиями от предыдущей таблицы):

Время

Мгновенная скорость

Отличие,%

2.000

19.620

25.00

1.500

14.715

16.67

1.100

10.791

4.55

1.050

10.301

2.38

1.010

9.908

0.5

1.001

9.820

0.05

Можно видеть, что по мере уменьшения рассматриваемых отрезков времени отличия между первой и второй таблицей уменьшаются.

Что мы узнали?

Мгновенная скорость – это скорость прохождения данного малого участка пути за малый промежуток времени. В идеале мгновенная скорость определяется на текущем бесконечно малом промежутке времени, за который совершается бесконечно малое перемещение.