Вход в систему

Векторная (многокритериальная) оптимизация

ВЕКТОРНАЯ (МНОГОКРИТЕРИАЛЬНАЯ) ОПТИМИЗАЦИЯ. Нередко встречаются случаи, когда какое-либо изучаемое явление, процесс характеризуется несколькими показателями – вектором показателей. Например, при оценке труда какого-нибудь рабочего используются показатели качества труда (точности обработки деталей) и производительности труда (время выполнения операций). При этом часто возникает вопрос о возможности однозначной оценки этого явления, процесса или изучаемых их свойств одной величиной – комплексной оценкой. Например, во многих спортивных состязаниях победитель выявляется по комплексной оценке – сумме очков, баллов, набранных на отдельных этапах состязания или в отдельных играх, в многоборье – в отдельных видах спорта.

На практике комплексные оценки встречаются довольно часто и, очевидно, без них не обойтись, хотя способы их определения нередко и вызывают множество недоуменных вопросов. Но в любом случае такие комплексные оценки, применяемые в повседневной жизни, являются либо результатом определенных общественных соглашений, которые признаются всеми участниками, либо установлены каким-либо нормативным актом определенного директивного органа – министерства, ведомства и т.д. и в силу этого также признаются всеми заинтересованными лицами.

Другое дело – применение комплексных оценок в научном исследовании. Здесь сразу на первое место встает вопрос о научной, в том числе математической, строгости применяемой оценки. В частности, например, не вызывает сомнений возможность использования в организации труда такой комплексной оценки, как суммарные затраты времени на выполнение тех или иных технологических операций. Здесь суммируются однородные величины, измеренные в шкале отношений.

Достаточно простым и интуитивно понятным (но, в то же время, корректным) методом агрегирования балльных оценок является использование так называемых матриц свертки [2], элементы которых содержат значения агрегированного показателя, а агрегируемые баллы задают номер строки и столбца.

В некоторое оправдание используемым на практике некорректным построениям комплексных оценок следует отметить, что проблема агрегирования векторных оценок на сегодняшний день исследована не полностью, а существующие результаты, даже для их применения на практике, зачастую требуют хорошего знания высшей математики. Качественно же проблема векторных оценок (или как ее иногда называют – проблема принятия решений при многих критериях) может быть проиллюстрирована на следующем простом примере из области экономики: имеются два инвестиционных проекта с одним и тем же размером первоначальных вложений (допустим, 100 единиц), причем первый характеризуется более высоким доходом (300 единиц), но и более высоким риском (предположим, что вероятность неуспеха равна 0,2), чем второй (доход – 250 единиц, вероятность неуспеха (риск) – 0,05). В какой из проектов следует осуществлять инвестиции? Ответ неоднозначен. Если бы первый проект был более прибыльным и менее рискованным, то следовало бы выбирать его. Но имеются два критерия (доход и риск) и первая альтернатива (первый проект) «лучше» по одному критерию, но «хуже» по второму. В подобных ситуациях обычно поступают следующим образом. На первом шаге выделяют множество эффективных альтернатив (так называемых, недоминируемых по Парето, то есть таких альтернатив, что не существует других допустимых альтернатив, которые были бы «не хуже» по всем критериям, а по одному из критериев – «строго лучше»). В рассматриваемом примере оба проекта эффективны по Парето.

Дальше – на втором шаге – возможно несколько вариантов (и привести априори рациональное обоснование того, какой из них следует использовать в том или ином конкретном случае, невозможно):

- ввести комплексный критерий, оценка по которому будет вычисляться агрегированием оценок по исходным критериям. В рассматриваемом примере таким критерием может быть ожидаемый доход (произведение дохода на вероятность его получения). Значение такого комплексного критерия для первого проекта равно 240 = 300 (1 – 0,2), для второго – 237,5 = 250 (1 – 0,05). С точки зрения максимизации ожидаемого дохода следует выбрать первый проект. В качестве комплексного критерия можно использовать ожидаемые потери (для первого проекта они равны 60 единиц, для второго – 12,5), тогда с точки зрения минимизации ожидаемых потерь следует выбрать второй проект;

- упорядочить критерии по важности. Если считать доход более важным критерием, чем риск, то следует выбрать первый проект (так как он приносит в случае успеха больший доход: 300 > 250). Но, если считать риск более важным критерием, чем доход, то следует выбрать второй проект (так как он характеризуется меньшим риском: 0,05 < 0,2);

- возможны и другие варианты принятия решений, часть из которых будет «рекомендовать» выбрать первый проект, а другая часть – второй.

Даже из приведенного элементарного примера многокритериальной задачи принятия решений видно, что универсальных «рецептов» в этой области не существует. Для тех, кто глубже заинтересуется проблемой комплексных оценок и принятия решений при многих критериях, можно рекомендовать ознакомиться с соответствующими публикациями [1, 3, 4]. Но в любом случае при построении комплексных оценок нужно быть предельно внимательным и осторожным. Кстати, нередко можно обойтись и без них. Если получены количественные результаты по отдельным показателям, то можно ограничиться их качественной интерпретацией, не «загоняя под общий знаменатель», проанализировать и сравнить исследуемые объекты отдельно по каждому из показателей.

Литература

  1. Ногин В.Д. Принятие решений в многокритериальной среде: количественный подход. – М.: Физматлит, 2002.
  2. Новиков Д.А. Теория управления организационными системами. 2-е изд. – М.: Физматлит, 2007.
  3. Орлов А.И. Устойчивость в социально-экономических моделях. – М.: Наука, 1979.
  4. Подиновский В.В., Ногин В.Д. Парето – оптимальные решения многокритериальных задач. – М.: Наука, 1982.